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In process of writing up previous results (summarized in 1997 FESAC report) us-
ing cross-validation etc. to estimate non-ideal statistical uncertainties in ITER-
93H empirical scaling. Extending analysis to more recent databases.

Simple description of effect of non-ideal correlated errors, cross-validation
method to estimate them.

Example application to ITER-93H database, extension to H98(y,2) database.

Major problems with original ITER-96 design essentially boiled down to the is-
sue that it had to operate at 1.5 × Greenwald density limit: significant uncertain-
ties in extrapolation.

New, improved fusion reactor designs: higher elongation & triangularity: below
Greenwald density, reduces uncertainties to more manageable level.

http://w3.pppl.gov/~hammett
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ITER-93H scaling for the tokamak energy confinement time τE compared with
the data from six tokamaks in DB2.5?? to which it was fit. The RMSE of the fit
in log(τE) is 0.123.
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Prediction of JET data (red), using a fit to the other five tokamaks excluding
JET data. The RMSE of the fit to the data excluding JET is 0.125. The RMSE
of predicting JET data is ∆JET = 0.408, which is significantly larger than ideal
expected ∆̂JET = 0.138 if all errors were statistically independent.

JET data is systematically low, mean prediction error ∆̄JET = −0.393, signifi-
cantly larger than expected ideal error in the mean σ∆̄JET

= ±0.060.
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(Like previous plot, but easier to see residuals.) Prediction of JET data (red)
using fit to other five tokamaks excluding JET. RMSE of fit to data excluding
JET is 0.125. RMSE of predicting JET data is ∆JET = 0.408, significantly larger
than ideal expected ∆̂JET = 0.138 if all errors were statistically independent.

JET data systematically low, mean prediction error ∆̄JET = −0.393, significantly
larger than expected ideal error in mean σ∆̄JET

= ±0.060.
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Residual errors of the fit to data excluding ASDEX (black, RMSE = 0.119). The re-
sulting fit is then used to predict ASDEX (red, RMSE=0.175, mean error=-0.097).
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Residual errors of the fit to data excluding DIII-D (black, RMSE = 0.113). The
resulting fit is then used to predict DIII-D (red, RMSE=0.350, mean error=-0.277).
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Residual errors of the fit to data excluding PBX-M (black, RMSE = 0.118). The re-
sulting fit is then used to predict PBX-M (red, RMSE=0.307, mean error=-0.277).
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Residual errors of the fit to data excluding PBX-M (black, RMSE = 0.118). The re-
sulting fit is then used to predict PBX-M (red, RMSE=0.307, mean error=-0.277).
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Residual errors of the fit to data excluding PDX (black, RMSE = 0.120). The
resulting fit is then used to predict PDX (red, RMSE=0.196, mean error=0.030).



Cross-validation motivation

Most elementary statistics textbooks focus on standard
techniques for ideal case of uncorrelated errors with
normal Gaussian distribution, etc.

Many ways in which ideal assumptions can be vio-
lated. Many specialized techniques developed to han-
dle various special cases. Cross-validation, jackknife,
described in classic textbook by Mosteller and Tukey,
advanced texts and research papers.

Cross-validation is straightforward technique to di-
rectly test how well a formula predicts new data the for-
mula wasn’t fit to. Avoids “overfitting”.

Cross-validation extensively used for neural networks:
train on one set of data, judge how well it performs on
an independent set of data.



Ideal statistics w/ uncorrelated errors

Simple model yi = µ + εi

ideal uncorrelated errors 〈εiεj〉 = σ2δij

Estimated mean ȳ =
1

N
∑

i
yi

Estimated variance s2 =
1

N − 1
∑

i
(yi − ȳ)2

〈s2〉 = σ2

Uncertainty in mean σ2
ȳ = 〈(ȳ − 〈ȳ〉)2〉 =

σ2

N



Non-Ideal statistics w/ correlated errors

For simplicity assume observations contain C perfectly
correlated copies. (can be generalized to partial correlations)

〈εi
∑

j
εj〉 = Cσ2

Effective number of indep. observations Neff = N/C

Unbiased est. variance s2
C =

1

Neff − 1

Neff
∑

i=1
(yiC − ȳ)2

Usual variance estimate is now biased:

s2 =
1

N − 1

N
∑

i=1
(yi − ȳ)2 =

C

N − 1

N/C
∑

i=1
(yiC − ȳ)2 =

N − C

N − 1
s2
C

Uncertainty in mean σ2
ȳ =

s2
C

Neff
= C

s2

N

N − 1

N − C



Error estimates for Multiple Regression

Uncertainty in regression formula’s predicted mean y(~x)

σ2
ŷ =

s2
C

Neff



1 + Λ2




where Λ2 = ∑

j(xj − x̄j)
2/σ2

xj
(in orthogonal basis) is dis-

tance of extrapolation from center of database, normal-
ized to std. dev.

Total expected variance ∆2
g of a new set of data g pre-

dicted by a regression formula:

∆2
g = s2

C +
s2
C

Neff



1 + Λ2




=
N − Np

N − CNp
s2 + C

N − Np

N − CNp

s2

N



1 + Λ2




Compare with actual error of prediction → measures C.



Cross-Validation for estimating non-ideal errors in
Multiple Regression

Drop one group of data (for example, from tokamak g)
from the database.

Fit a regression formula y(g)(~x) to the data excluding
group g.

Use this regression formula to predict data in group g,
measure the actual error of prediction ∆2

g.

Repeat for each group g. Average results to determine
the effective number of correlated observations C

C =
∆2

gN(g) − s2
(g)(N(g) − Np)

∆2
gNp + 〈〈s2

ŷ〉〉g(N(g) − Np)

and effective number of independent obs. Neff = N/C.

Monte Carlo tests with synthetic data used to verify
these formulas.



Cross-validation summary table for ITER-93H scaling
Tokamak RMSE ME RMSE ideal ideal ideal RMS # of # of

(Group) prediction pred fit sd(pred RMSE sd(ME) extrap. obs. eff.
predicted actual mean) pred dist. corr.

obs.

g ∆g ∆g s(g) 〈〈s2
ŷ〉〉

1/2
g ∆̂g σ∆,g Λ Ng Cg

ASDEX 0.175 0.097 0.119 0.027 0.122 0.030 6.3 91 15.0
D3D 0.350 0.277 0.113 0.031 0.117 0.036 7.8 40 47.7
JET 0.408 -0.393 0.125 0.059 0.138 0.060 11.1 303 24.6

JFT2M 0.215 -0.177 0.123 0.037 0.128 0.037 7.3 247 15.6
PBXM 0.307 0.277 0.118 0.038 0.124 0.039 8.5 155 30.7

PDX 0.196 -0.030 0.120 0.021 0.122 0.033 4.8 22 29.2
Avg. 0.288 0.241 0.120 0.037 0.126 0.040 7.9 143 27.1

More careful averaging yields C = 28.5 for equal tokamak weighting and C =

24.7 for equal observation weighting. The resulting uncertainty in any predicted
mean response is enhanced by a factor of 6.3 (equal tokamak weighting) or 5.7
(equal observation weighting) over the standard result with ideal statistics.



Cross-validation summary table for IPB98(y,2) scaling
Tokamak RMSE ME RMSE ideal ideal ideal RMS # of # of

(Group) prediction pred fit sd(pred RMSE sd(ME) extrap. obs. eff.
predicted actual mean) pred dist. corr.

obs.

g ∆g ∆g s(g) 〈〈s2
ŷ〉〉

1/2
g ∆̂g σ∆,g Λ Ng Cg

ASDEX 0.148 -0.049 0.145 0.021 0.147 0.022 4.1 431 1.5
AUG 0.135 -0.054 0.143 0.009 0.144 0.017 2.0 102 -10.2

CMOD 0.313 0.299 0.142 0.041 0.147 0.047 10.3 37 33.0
D3D 0.191 -0.102 0.136 0.018 0.137 0.020 4.3 270 27.9
JET 0.296 0.267 0.139 0.026 0.142 0.028 6.0 246 48.3

JFT2M 0.122 0.090 0.144 0.023 0.146 0.030 5.6 59 -9.1
JT60U 0.246 -0.243 0.142 0.014 0.142 0.049 3.3 9 67.3
PBXM 0.245 0.176 0.140 0.039 0.146 0.043 9.9 59 20.6

PDX 0.196 0.069 0.139 0.017 0.140 0.022 4.1 97 33.7
Avg. 0.220 0.176 0.141 0.025 0.143 0.033 6.1 145.6 23.7

More careful averaging yields C = 28.7 for equal tokamak weighting and C = 26.7

for equal observation weighting. Uncertainty in predicted mean enhanced by
factor of 6.0 (equal tokamaks) or 5.7 (equal observations) over standard ideal
result. Errors also drop because N = 858 for ITER-93H, N = 1310 observations
for IPB − 98(y, 2), and dataset covers wider parameter range.
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Predicted τE for ITER-96 design (or slightly lower density ITER-98) with estimated 1
and 2 σ error bars:
”93H-est” σ = 0.12 original ITER assumption Neff = N/4

”93H-cv-eo” σ = 0.29 cross-validation est. equal obs. weights
”93H-cv-et” σ = 0.32 cross-validation est. equal tok. weights
”IPB98/96” σ = 0.23 cross-validation est. orig. ITER96 design
”IPB98/98” σ = 0.21 cross-validation est. ITER98
”IPB98-et” σ = 0.21 equal tok. weight in fit and CV



Stronger plasma shaping improves performance
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JET data from G. Saibene, EPS 2001, J. Ongena, PPCF 2001. Seen in other tokamaks also.

Confinement degrades if density too large relative to empirical Greenwald den-
sity limit nGr = Ip/πa2, improves with higher triangularity.

Relative to original 1996 ITER design, new ITER-FEAT 2001 and FIRE designs
have significantly higher triangularity and elongation, & designed to operate at
significantly lower density relative to Greenwald density limit.



Improvements in new fusion designs ↓ uncertainties

Density and pressure limits improve with stronger shaping elongation κ & trian-
gularity δ:

Empirical Greenwald density limit nGr =
Ip

πa2
∝

BT

Rq95

[

1 + κ2(1 + 2δ2)
]

Pressure limit βTroyon =
p

B2/8π
=

Ip

aBT

∝
a

Rq95

[

1 + κ2(1 + 2δ2)
]

New ITER-FEAT design uses segmented central solenoid to increase shaping.

FIRE pushes to even stronger shaping.

R a B Ip nGr
〈ne〉
nGr

κx δx Pfusion Pα/(2πR)

m m T MA 10
20/m3 keV

ITER-96 8.14 2.80 5.68 21.0 0.85 1.50 1.75 0.35 1500 5.9
ITER-FEAT 6.20 2.00 5.30 15.1 1.19 0.85 1.85 0.48 400 2.0
FIRE 2.14 0.60 10.0 7.7 6.92 0.66 2.00 0.70 150 2.2
Aries-AT (a goal) 5.20 1.30 5.86 12.8 2.41 1.00 2.18 0.84 1760 9.0

Caveats: There are still some remaining uncertainties regarding confinement, edge pedestal scaling,

ELMs, disruptions, & heat loads, tritium retention, neoclassical beta limits, but also reasonable possi-

bilities for dealing with potential problems or further improving performance.


